from typing import Optional from torch import Tensor from ..core.transforms_interface import BaseWaveformTransform from ..utils.object_dict import ObjectDict class Identity(BaseWaveformTransform): """ This transform returns the input unchanged. It can be used for simplifying the code in cases where data augmentation should be disabled. """ supported_modes = {"per_batch", "per_example", "per_channel"} supports_multichannel = True requires_sample_rate = False supports_target = True requires_target = False def apply_transform( self, samples: Tensor = None, sample_rate: Optional[int] = None, targets: Optional[Tensor] = None, target_rate: Optional[int] = None, ) -> ObjectDict: return ObjectDict( samples=samples, sample_rate=sample_rate, targets=targets, target_rate=target_rate, )
Memory