# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CSV logger ---------- CSV logger for basic experiment logging that does not require opening ports """ import os from argparse import Namespace from typing import Any, Optional, Union from typing_extensions import override from lightning_fabric.loggers.csv_logs import CSVLogger as FabricCSVLogger from lightning_fabric.loggers.csv_logs import _ExperimentWriter as _FabricExperimentWriter from lightning_fabric.loggers.logger import rank_zero_experiment from lightning_fabric.utilities.logger import _convert_params from lightning_fabric.utilities.types import _PATH from pytorch_lightning.core.saving import save_hparams_to_yaml from pytorch_lightning.loggers.logger import Logger from pytorch_lightning.utilities.rank_zero import rank_zero_only class ExperimentWriter(_FabricExperimentWriter): r"""Experiment writer for CSVLogger. Currently, supports to log hyperparameters and metrics in YAML and CSV format, respectively. This logger supports logging to remote filesystems via ``fsspec``. Make sure you have it installed. Args: log_dir: Directory for the experiment logs """ NAME_HPARAMS_FILE = "hparams.yaml" def __init__(self, log_dir: str) -> None: super().__init__(log_dir=log_dir) self.hparams: dict[str, Any] = {} def log_hparams(self, params: dict[str, Any]) -> None: """Record hparams and save into files.""" self.hparams.update(params) hparams_file = os.path.join(self.log_dir, self.NAME_HPARAMS_FILE) save_hparams_to_yaml(hparams_file, self.hparams) class CSVLogger(Logger, FabricCSVLogger): r"""Log to local file system in yaml and CSV format. Logs are saved to ``os.path.join(save_dir, name, version)``. Example: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.loggers import CSVLogger >>> logger = CSVLogger("logs", name="my_exp_name") >>> trainer = Trainer(logger=logger) Args: save_dir: Save directory name: Experiment name, optional. Defaults to ``'lightning_logs'``. If name is ``None``, logs (versions) will be stored to the save dir directly. version: Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. prefix: A string to put at the beginning of metric keys. flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps). """ LOGGER_JOIN_CHAR = "-" def __init__( self, save_dir: _PATH, name: Optional[str] = "lightning_logs", version: Optional[Union[int, str]] = None, prefix: str = "", flush_logs_every_n_steps: int = 100, ): super().__init__( root_dir=save_dir, name=name, version=version, prefix=prefix, flush_logs_every_n_steps=flush_logs_every_n_steps, ) self._save_dir = os.fspath(save_dir) @property @override def root_dir(self) -> str: """Parent directory for all checkpoint subdirectories. If the experiment name parameter is an empty string, no experiment subdirectory is used and the checkpoint will be saved in "save_dir/version" """ return os.path.join(self.save_dir, self.name) @property @override def log_dir(self) -> str: """The log directory for this run. By default, it is named ``'version_${self.version}'`` but it can be overridden by passing a string value for the constructor's version parameter instead of ``None`` or an int. """ # create a pseudo standard path version = self.version if isinstance(self.version, str) else f"version_{self.version}" return os.path.join(self.root_dir, version) @property @override def save_dir(self) -> str: """The current directory where logs are saved. Returns: The path to current directory where logs are saved. """ return self._save_dir @override @rank_zero_only def log_hyperparams(self, params: Optional[Union[dict[str, Any], Namespace]] = None) -> None: params = _convert_params(params) self.experiment.log_hparams(params) @property @override @rank_zero_experiment def experiment(self) -> _FabricExperimentWriter: r"""Actual _ExperimentWriter object. To use _ExperimentWriter features in your :class:`~pytorch_lightning.core.LightningModule` do the following. Example:: self.logger.experiment.some_experiment_writer_function() """ if self._experiment is not None: return self._experiment self._fs.makedirs(self.root_dir, exist_ok=True) self._experiment = ExperimentWriter(log_dir=self.log_dir) return self._experiment
Memory