from __future__ import annotations
from collections import defaultdict
from collections.abc import Iterator
from contextlib import contextmanager
from typing import NamedTuple, Optional, Union
from typing_extensions import TypeAlias as _TypeAlias
from mypy.erasetype import remove_instance_last_known_values
from mypy.literals import Key, extract_var_from_literal_hash, literal, literal_hash, subkeys
from mypy.nodes import Expression, IndexExpr, MemberExpr, NameExpr, RefExpr, TypeInfo, Var
from mypy.options import Options
from mypy.subtypes import is_same_type, is_subtype
from mypy.typeops import make_simplified_union
from mypy.types import (
AnyType,
Instance,
NoneType,
PartialType,
ProperType,
TupleType,
Type,
TypeOfAny,
TypeType,
TypeVarType,
UnionType,
UnpackType,
find_unpack_in_list,
get_proper_type,
)
from mypy.typevars import fill_typevars_with_any
BindableExpression: _TypeAlias = Union[IndexExpr, MemberExpr, NameExpr]
class CurrentType(NamedTuple):
type: Type
from_assignment: bool
class Frame:
"""A Frame represents a specific point in the execution of a program.
It carries information about the current types of expressions at
that point, arising either from assignments to those expressions
or the result of isinstance checks and other type narrowing
operations. It also records whether it is possible to reach that
point at all.
We add a new frame wherenever there is a new scope or control flow
branching.
This information is not copied into a new Frame when it is pushed
onto the stack, so a given Frame only has information about types
that were assigned in that frame.
Expressions are stored in dicts using 'literal hashes' as keys (type
"Key"). These are hashable values derived from expression AST nodes
(only those that can be narrowed). literal_hash(expr) is used to
calculate the hashes. Note that this isn't directly related to literal
types -- the concept predates literal types.
"""
def __init__(self, id: int, conditional_frame: bool = False) -> None:
self.id = id
self.types: dict[Key, CurrentType] = {}
self.unreachable = False
self.conditional_frame = conditional_frame
self.suppress_unreachable_warnings = False
def __repr__(self) -> str:
return f"Frame({self.id}, {self.types}, {self.unreachable}, {self.conditional_frame})"
Assigns = defaultdict[Expression, list[tuple[Type, Optional[Type]]]]
class ConditionalTypeBinder:
"""Keep track of conditional types of variables.
NB: Variables are tracked by literal hashes of expressions, so it is
possible to confuse the binder when there is aliasing. Example:
class A:
a: int | str
x = A()
lst = [x]
reveal_type(x.a) # int | str
x.a = 1
reveal_type(x.a) # int
reveal_type(lst[0].a) # int | str
lst[0].a = 'a'
reveal_type(x.a) # int
reveal_type(lst[0].a) # str
"""
# Stored assignments for situations with tuple/list lvalue and rvalue of union type.
# This maps an expression to a list of bound types for every item in the union type.
type_assignments: Assigns | None = None
def __init__(self, options: Options) -> None:
# Each frame gets an increasing, distinct id.
self.next_id = 1
# The stack of frames currently used. These map
# literal_hash(expr) -- literals like 'foo.bar' --
# to types. The last element of this list is the
# top-most, current frame. Each earlier element
# records the state as of when that frame was last
# on top of the stack.
self.frames = [Frame(self._get_id())]
# For frames higher in the stack, we record the set of
# Frames that can escape there, either by falling off
# the end of the frame or by a loop control construct
# or raised exception. The last element of self.frames
# has no corresponding element in this list.
self.options_on_return: list[list[Frame]] = []
# Maps literal_hash(expr) to get_declaration(expr)
# for every expr stored in the binder
self.declarations: dict[Key, Type | None] = {}
# Set of other keys to invalidate if a key is changed, e.g. x -> {x.a, x[0]}
# Whenever a new key (e.g. x.a.b) is added, we update this
self.dependencies: dict[Key, set[Key]] = {}
# Whether the last pop changed the newly top frame on exit
self.last_pop_changed = False
# These are used to track control flow in try statements and loops.
self.try_frames: set[int] = set()
self.break_frames: list[int] = []
self.continue_frames: list[int] = []
# If True, initial assignment to a simple variable (e.g. "x", but not "x.y")
# is added to the binder. This allows more precise narrowing and more
# flexible inference of variable types (--allow-redefinition-new).
self.bind_all = options.allow_redefinition_new
def _get_id(self) -> int:
self.next_id += 1
return self.next_id
def _add_dependencies(self, key: Key, value: Key | None = None) -> None:
if value is None:
value = key
else:
self.dependencies.setdefault(key, set()).add(value)
for elt in subkeys(key):
self._add_dependencies(elt, value)
def push_frame(self, conditional_frame: bool = False) -> Frame:
"""Push a new frame into the binder."""
f = Frame(self._get_id(), conditional_frame)
self.frames.append(f)
self.options_on_return.append([])
return f
def _put(self, key: Key, type: Type, from_assignment: bool, index: int = -1) -> None:
self.frames[index].types[key] = CurrentType(type, from_assignment)
def _get(self, key: Key, index: int = -1) -> CurrentType | None:
if index < 0:
index += len(self.frames)
for i in range(index, -1, -1):
if key in self.frames[i].types:
return self.frames[i].types[key]
return None
def put(self, expr: Expression, typ: Type, *, from_assignment: bool = True) -> None:
"""Directly set the narrowed type of expression (if it supports it).
This is used for isinstance() etc. Assignments should go through assign_type().
"""
if not isinstance(expr, (IndexExpr, MemberExpr, NameExpr)):
return
if not literal(expr):
return
key = literal_hash(expr)
assert key is not None, "Internal error: binder tried to put non-literal"
if key not in self.declarations:
self.declarations[key] = get_declaration(expr)
self._add_dependencies(key)
self._put(key, typ, from_assignment)
def unreachable(self) -> None:
self.frames[-1].unreachable = True
def suppress_unreachable_warnings(self) -> None:
self.frames[-1].suppress_unreachable_warnings = True
def get(self, expr: Expression) -> Type | None:
key = literal_hash(expr)
assert key is not None, "Internal error: binder tried to get non-literal"
found = self._get(key)
if found is None:
return None
return found.type
def is_unreachable(self) -> bool:
# TODO: Copy the value of unreachable into new frames to avoid
# this traversal on every statement?
return any(f.unreachable for f in self.frames)
def is_unreachable_warning_suppressed(self) -> bool:
return any(f.suppress_unreachable_warnings for f in self.frames)
def cleanse(self, expr: Expression) -> None:
"""Remove all references to a Node from the binder."""
key = literal_hash(expr)
assert key is not None, "Internal error: binder tried cleanse non-literal"
self._cleanse_key(key)
def _cleanse_key(self, key: Key) -> None:
"""Remove all references to a key from the binder."""
for frame in self.frames:
if key in frame.types:
del frame.types[key]
def update_from_options(self, frames: list[Frame]) -> bool:
"""Update the frame to reflect that each key will be updated
as in one of the frames. Return whether any item changes.
If a key is declared as AnyType, only update it if all the
options are the same.
"""
all_reachable = all(not f.unreachable for f in frames)
frames = [f for f in frames if not f.unreachable]
changed = False
keys = {key for f in frames for key in f.types}
for key in keys:
current_value = self._get(key)
resulting_values = [f.types.get(key, current_value) for f in frames]
# Keys can be narrowed using two different semantics. The new semantics
# is enabled for plain variables when bind_all is true, and it allows
# variable types to be widened using subsequent assignments. This is
# tricky to support for instance attributes (primarily due to deferrals),
# so we don't use it for them.
old_semantics = not self.bind_all or extract_var_from_literal_hash(key) is None
if old_semantics and any(x is None for x in resulting_values):
# We didn't know anything about key before
# (current_value must be None), and we still don't
# know anything about key in at least one possible frame.
continue
resulting_values = [x for x in resulting_values if x is not None]
if all_reachable and all(
x is not None and not x.from_assignment for x in resulting_values
):
# Do not synthesize a new type if we encountered a conditional block
# (if, while or match-case) without assignments.
# See check-isinstance.test::testNoneCheckDoesNotMakeTypeVarOptional
# This is a safe assumption: the fact that we checked something with `is`
# or `isinstance` does not change the type of the value.
continue
current_type = resulting_values[0]
assert current_type is not None
type = current_type.type
declaration_type = get_proper_type(self.declarations.get(key))
if isinstance(declaration_type, AnyType):
# At this point resulting values can't contain None, see continue above
if not all(
t is not None and is_same_type(type, t.type) for t in resulting_values[1:]
):
type = AnyType(TypeOfAny.from_another_any, source_any=declaration_type)
else:
possible_types = []
for t in resulting_values:
assert t is not None
possible_types.append(t.type)
if len(possible_types) == 1:
# This is to avoid calling get_proper_type() unless needed, as this may
# interfere with our (hacky) TypeGuard support.
type = possible_types[0]
else:
type = make_simplified_union(possible_types)
# Legacy guard for corner case when the original type is TypeVarType.
if isinstance(declaration_type, TypeVarType) and not is_subtype(
type, declaration_type
):
type = declaration_type
# Try simplifying resulting type for unions involving variadic tuples.
# Technically, everything is still valid without this step, but if we do
# not do this, this may create long unions after exiting an if check like:
# x: tuple[int, ...]
# if len(x) < 10:
# ...
# We want the type of x to be tuple[int, ...] after this block (if it is
# still equivalent to such type).
if isinstance(type, UnionType):
type = collapse_variadic_union(type)
if (
old_semantics
and isinstance(type, ProperType)
and isinstance(type, UnionType)
):
# Simplify away any extra Any's that were added to the declared
# type when popping a frame.
simplified = UnionType.make_union(
[t for t in type.items if not isinstance(get_proper_type(t), AnyType)]
)
if simplified == self.declarations[key]:
type = simplified
if current_value is None or not is_same_type(type, current_value.type):
self._put(key, type, from_assignment=True)
changed = True
self.frames[-1].unreachable = not frames
return changed
def pop_frame(self, can_skip: bool, fall_through: int) -> Frame:
"""Pop a frame and return it.
See frame_context() for documentation of fall_through.
"""
if fall_through > 0:
self.allow_jump(-fall_through)
result = self.frames.pop()
options = self.options_on_return.pop()
if can_skip:
options.insert(0, self.frames[-1])
self.last_pop_changed = self.update_from_options(options)
return result
@contextmanager
def accumulate_type_assignments(self) -> Iterator[Assigns]:
"""Push a new map to collect assigned types in multiassign from union.
If this map is not None, actual binding is deferred until all items in
the union are processed (a union of collected items is later bound
manually by the caller).
"""
old_assignments = None
if self.type_assignments is not None:
old_assignments = self.type_assignments
self.type_assignments = defaultdict(list)
yield self.type_assignments
self.type_assignments = old_assignments
def assign_type(self, expr: Expression, type: Type, declared_type: Type | None) -> None:
"""Narrow type of expression through an assignment.
Do nothing if the expression doesn't support narrowing.
When not narrowing though an assignment (isinstance() etc.), use put()
directly. This omits some special-casing logic for assignments.
"""
# We should erase last known value in binder, because if we are using it,
# it means that the target is not final, and therefore can't hold a literal.
type = remove_instance_last_known_values(type)
if self.type_assignments is not None:
# We are in a multiassign from union, defer the actual binding,
# just collect the types.
self.type_assignments[expr].append((type, declared_type))
return
if not isinstance(expr, (IndexExpr, MemberExpr, NameExpr)):
return
if not literal(expr):
return
self.invalidate_dependencies(expr)
if declared_type is None:
# Not sure why this happens. It seems to mainly happen in
# member initialization.
return
if not is_subtype(type, declared_type):
# Pretty sure this is only happens when there's a type error.
# Ideally this function wouldn't be called if the
# expression has a type error, though -- do other kinds of
# errors cause this function to get called at invalid
# times?
return
p_declared = get_proper_type(declared_type)
p_type = get_proper_type(type)
if isinstance(p_type, AnyType):
# Any type requires some special casing, for both historical reasons,
# and to optimise user experience without sacrificing correctness too much.
if isinstance(expr, RefExpr) and isinstance(expr.node, Var) and expr.node.is_inferred:
# First case: a local/global variable without explicit annotation,
# in this case we just assign Any (essentially following the SSA logic).
self.put(expr, type)
elif isinstance(p_declared, UnionType) and any(
isinstance(get_proper_type(item), NoneType) for item in p_declared.items
):
# Second case: explicit optional type, in this case we optimize for a common
# pattern when an untyped value used as a fallback replacing None.
new_items = [
type if isinstance(get_proper_type(item), NoneType) else item
for item in p_declared.items
]
self.put(expr, UnionType(new_items))
elif isinstance(p_declared, UnionType) and any(
isinstance(get_proper_type(item), AnyType) for item in p_declared.items
):
# Third case: a union already containing Any (most likely from an un-imported
# name), in this case we allow assigning Any as well.
self.put(expr, type)
else:
# In all other cases we don't narrow to Any to minimize false negatives.
self.put(expr, declared_type)
elif isinstance(p_declared, AnyType):
# Mirroring the first case above, we don't narrow to a precise type if the variable
# has an explicit `Any` type annotation.
if isinstance(expr, RefExpr) and isinstance(expr.node, Var) and expr.node.is_inferred:
self.put(expr, type)
else:
self.put(expr, declared_type)
else:
self.put(expr, type)
for i in self.try_frames:
# XXX This should probably not copy the entire frame, but
# just copy this variable into a single stored frame.
self.allow_jump(i)
def invalidate_dependencies(self, expr: BindableExpression) -> None:
"""Invalidate knowledge of types that include expr, but not expr itself.
For example, when expr is foo.bar, invalidate foo.bar.baz.
It is overly conservative: it invalidates globally, including
in code paths unreachable from here.
"""
key = literal_hash(expr)
assert key is not None
for dep in self.dependencies.get(key, set()):
self._cleanse_key(dep)
def allow_jump(self, index: int) -> None:
# self.frames and self.options_on_return have different lengths
# so make sure the index is positive
if index < 0:
index += len(self.options_on_return)
frame = Frame(self._get_id())
for f in self.frames[index + 1 :]:
frame.types.update(f.types)
if f.unreachable:
frame.unreachable = True
self.options_on_return[index].append(frame)
def handle_break(self) -> None:
self.allow_jump(self.break_frames[-1])
self.unreachable()
def handle_continue(self) -> None:
self.allow_jump(self.continue_frames[-1])
self.unreachable()
@contextmanager
def frame_context(
self,
*,
can_skip: bool,
fall_through: int = 1,
break_frame: int = 0,
continue_frame: int = 0,
conditional_frame: bool = False,
try_frame: bool = False,
) -> Iterator[Frame]:
"""Return a context manager that pushes/pops frames on enter/exit.
If can_skip is True, control flow is allowed to bypass the
newly-created frame.
If fall_through > 0, then it will allow control flow that
falls off the end of the frame to escape to its ancestor
`fall_through` levels higher. Otherwise control flow ends
at the end of the frame.
If break_frame > 0, then 'break' statements within this frame
will jump out to the frame break_frame levels higher than the
frame created by this call to frame_context. Similarly for
continue_frame and 'continue' statements.
If try_frame is true, then execution is allowed to jump at any
point within the newly created frame (or its descendants) to
its parent (i.e., to the frame that was on top before this
call to frame_context).
After the context manager exits, self.last_pop_changed indicates
whether any types changed in the newly-topmost frame as a result
of popping this frame.
"""
assert len(self.frames) > 1
if break_frame:
self.break_frames.append(len(self.frames) - break_frame)
if continue_frame:
self.continue_frames.append(len(self.frames) - continue_frame)
if try_frame:
self.try_frames.add(len(self.frames) - 1)
new_frame = self.push_frame(conditional_frame)
if try_frame:
# An exception may occur immediately
self.allow_jump(-1)
yield new_frame
self.pop_frame(can_skip, fall_through)
if break_frame:
self.break_frames.pop()
if continue_frame:
self.continue_frames.pop()
if try_frame:
self.try_frames.remove(len(self.frames) - 1)
@contextmanager
def top_frame_context(self) -> Iterator[Frame]:
"""A variant of frame_context for use at the top level of
a namespace (module, function, or class).
"""
assert len(self.frames) == 1
yield self.push_frame()
self.pop_frame(True, 0)
assert len(self.frames) == 1
def get_declaration(expr: BindableExpression) -> Type | None:
"""Get the declared or inferred type of a RefExpr expression.
Return None if there is no type or the expression is not a RefExpr.
This can return None if the type hasn't been inferred yet.
"""
if isinstance(expr, RefExpr):
if isinstance(expr.node, Var):
type = expr.node.type
if not isinstance(get_proper_type(type), PartialType):
return type
elif isinstance(expr.node, TypeInfo):
return TypeType(fill_typevars_with_any(expr.node))
return None
def collapse_variadic_union(typ: UnionType) -> Type:
"""Simplify a union involving variadic tuple if possible.
This will collapse a type like e.g.
tuple[X, Z] | tuple[X, Y, Z] | tuple[X, Y, Y, *tuple[Y, ...], Z]
back to
tuple[X, *tuple[Y, ...], Z]
which is equivalent, but much simpler form of the same type.
"""
tuple_items = []
other_items = []
for t in typ.items:
p_t = get_proper_type(t)
if isinstance(p_t, TupleType):
tuple_items.append(p_t)
else:
other_items.append(t)
if len(tuple_items) <= 1:
# This type cannot be simplified further.
return typ
tuple_items = sorted(tuple_items, key=lambda t: len(t.items))
first = tuple_items[0]
last = tuple_items[-1]
unpack_index = find_unpack_in_list(last.items)
if unpack_index is None:
return typ
unpack = last.items[unpack_index]
assert isinstance(unpack, UnpackType)
unpacked = get_proper_type(unpack.type)
if not isinstance(unpacked, Instance):
return typ
assert unpacked.type.fullname == "builtins.tuple"
suffix = last.items[unpack_index + 1 :]
# Check that first item matches the expected pattern and infer prefix.
if len(first.items) < len(suffix):
return typ
if suffix and first.items[-len(suffix) :] != suffix:
return typ
if suffix:
prefix = first.items[: -len(suffix)]
else:
prefix = first.items
# Check that all middle types match the expected pattern as well.
arg = unpacked.args[0]
for i, it in enumerate(tuple_items[1:-1]):
if it.items != prefix + [arg] * (i + 1) + suffix:
return typ
# Check the last item (the one with unpack), and choose an appropriate simplified type.
if last.items != prefix + [arg] * (len(typ.items) - 1) + [unpack] + suffix:
return typ
if len(first.items) == 0:
simplified: Type = unpacked.copy_modified()
else:
simplified = TupleType(prefix + [unpack] + suffix, fallback=last.partial_fallback)
return UnionType.make_union([simplified] + other_items)