Metadata-Version: 2.4 Name: ml_collections Version: 1.1.0 Summary: ML Collections is a library of Python collections designed for ML usecases. Keywords: Author-email: ML Collections Authors <ml-collections@google.com> Requires-Python: >=3.10 Description-Content-Type: text/markdown Classifier: Development Status :: 4 - Beta Classifier: Intended Audience :: Developers Classifier: Intended Audience :: Science/Research Classifier: License :: OSI Approved :: Apache Software License Classifier: Programming Language :: Python Classifier: Topic :: Scientific/Engineering Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence Classifier: Topic :: Software Development :: Libraries Classifier: Topic :: Software Development :: Libraries :: Python Modules License-File: LICENSE Requires-Dist: absl-py Requires-Dist: PyYAML Requires-Dist: pytest ; extra == "dev" Requires-Dist: pytest-xdist ; extra == "dev" Requires-Dist: pylint>=2.6.0 ; extra == "dev" Requires-Dist: pyink ; extra == "dev" Project-URL: documentation, https://ml-collections.readthedocs.io Project-URL: homepage, https://github.com/google/ml_collections Project-URL: repository, https://github.com/google/ml_collections Provides-Extra: dev # ML Collections ML Collections is a library of Python Collections designed for ML use cases. [![Documentation Status](https://readthedocs.org/projects/ml-collections/badge/?version=latest)](https://ml-collections.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/ml-collections.svg)](https://badge.fury.io/py/ml-collections) [![Build Status](https://github.com/google/ml_collections/actions/workflows/pytest_and_autopublish.yml/badge.svg)](https://github.com/google/ml_collections/actions/workflows/pytest_and_autopublish.yml) ## ConfigDict The two classes called `ConfigDict` and `FrozenConfigDict` are "dict-like" data structures with dot access to nested elements. Together, they are supposed to be used as a main way of expressing configurations of experiments and models. This document describes example usage of `ConfigDict`, `FrozenConfigDict`, `FieldReference`. ### Features * Dot-based access to fields. * Locking mechanism to prevent spelling mistakes. * Lazy computation. * FrozenConfigDict() class which is immutable and hashable. * Type safety. * "Did you mean" functionality. * Human readable printing (with valid references and cycles), using valid YAML format. * Fields can be passed as keyword arguments using the `**` operator. * There is one exception to the strong type-safety of the ConfigDict: `int` values can be passed in to fields of type `float`. In such a case, the value is type-converted to a `float` before being stored. (Back in the day of Python 2, there was a similar exception to allow both `str` and `unicode` values in string fields.) ### Basic Usage ```python from ml_collections import config_dict cfg = config_dict.ConfigDict() cfg.float_field = 12.6 cfg.integer_field = 123 cfg.another_integer_field = 234 cfg.nested = config_dict.ConfigDict() cfg.nested.string_field = 'tom' print(cfg.integer_field) # Prints 123. print(cfg['integer_field']) # Prints 123 as well. try: cfg.integer_field = 'tom' # Raises TypeError as this field is an integer. except TypeError as e: print(e) cfg.float_field = 12 # Works: `Int` types can be assigned to `Float`. cfg.nested.string_field = u'bob' # `String` fields can store Unicode strings. print(cfg) ``` ### FrozenConfigDict A `FrozenConfigDict`is an immutable, hashable type of `ConfigDict`: ```python from ml_collections import config_dict initial_dictionary = { 'int': 1, 'list': [1, 2], 'tuple': (1, 2, 3), 'set': {1, 2, 3, 4}, 'dict_tuple_list': {'tuple_list': ([1, 2], 3)} } cfg = config_dict.ConfigDict(initial_dictionary) frozen_dict = config_dict.FrozenConfigDict(initial_dictionary) print(frozen_dict.tuple) # Prints tuple (1, 2, 3) print(frozen_dict.list) # Prints tuple (1, 2) print(frozen_dict.set) # Prints frozenset {1, 2, 3, 4} print(frozen_dict.dict_tuple_list.tuple_list[0]) # Prints tuple (1, 2) frozen_cfg = config_dict.FrozenConfigDict(cfg) print(frozen_cfg == frozen_dict) # True print(hash(frozen_cfg) == hash(frozen_dict)) # True try: frozen_dict.int = 2 # Raises TypeError as FrozenConfigDict is immutable. except AttributeError as e: print(e) # Converting between `FrozenConfigDict` and `ConfigDict`: thawed_frozen_cfg = config_dict.ConfigDict(frozen_dict) print(thawed_frozen_cfg == cfg) # True frozen_cfg_to_cfg = frozen_dict.as_configdict() print(frozen_cfg_to_cfg == cfg) # True ``` ### FieldReferences and placeholders A `FieldReference` is useful for having multiple fields use the same value. It can also be used for [lazy computation](#lazy-computation). You can use `placeholder()` as a shortcut to create a `FieldReference` (field) with a `None` default value. This is useful if a program uses optional configuration fields. ```python from ml_collections import config_dict placeholder = config_dict.FieldReference(0) cfg = config_dict.ConfigDict() cfg.placeholder = placeholder cfg.optional = config_dict.placeholder(int) cfg.nested = config_dict.ConfigDict() cfg.nested.placeholder = placeholder try: cfg.optional = 'tom' # Raises Type error as this field is an integer. except TypeError as e: print(e) cfg.optional = 1555 # Works fine. cfg.placeholder = 1 # Changes the value of both placeholder and # nested.placeholder fields. print(cfg) ``` Note that the indirection provided by `FieldReference`s will be lost if accessed through a `ConfigDict`. ```python from ml_collections import config_dict placeholder = config_dict.FieldReference(0) cfg.field1 = placeholder cfg.field2 = placeholder # This field will be tied to cfg.field1. cfg.field3 = cfg.field1 # This will just be an int field initialized to 0. ``` ### Lazy computation Using a `FieldReference` in a standard operation (addition, subtraction, multiplication, etc...) will return another `FieldReference` that points to the original's value. You can use `FieldReference.get()` to execute the operations and get the reference's computed value, and `FieldReference.set()` to change the original reference's value. ```python from ml_collections import config_dict ref = config_dict.FieldReference(1) print(ref.get()) # Prints 1 add_ten = ref.get() + 10 # ref.get() is an integer and so is add_ten add_ten_lazy = ref + 10 # add_ten_lazy is a FieldReference - NOT an integer print(add_ten) # Prints 11 print(add_ten_lazy.get()) # Prints 11 because ref's value is 1 # Addition is lazily computed for FieldReferences so changing ref will change # the value that is used to compute add_ten. ref.set(5) print(add_ten) # Prints 11 print(add_ten_lazy.get()) # Prints 15 because ref's value is 5 ``` If a `FieldReference` has `None` as its original value, or any operation has an argument of `None`, then the lazy computation will evaluate to `None`. We can also use fields in a `ConfigDict` in lazy computation. In this case a field will only be lazily evaluated if `ConfigDict.get_ref()` is used to get it. ```python from ml_collections import config_dict config = config_dict.ConfigDict() config.reference_field = config_dict.FieldReference(1) config.integer_field = 2 config.float_field = 2.5 # No lazy evaluatuations because we didn't use get_ref() config.no_lazy = config.integer_field * config.float_field # This will lazily evaluate ONLY config.integer_field config.lazy_integer = config.get_ref('integer_field') * config.float_field # This will lazily evaluate ONLY config.float_field config.lazy_float = config.integer_field * config.get_ref('float_field') # This will lazily evaluate BOTH config.integer_field and config.float_Field config.lazy_both = (config.get_ref('integer_field') * config.get_ref('float_field')) config.integer_field = 3 print(config.no_lazy) # Prints 5.0 - It uses integer_field's original value print(config.lazy_integer) # Prints 7.5 config.float_field = 3.5 print(config.lazy_float) # Prints 7.0 print(config.lazy_both) # Prints 10.5 ``` #### Changing lazily computed values Lazily computed values in a ConfigDict can be overridden in the same way as regular values. The reference to the `FieldReference` used for the lazy computation will be lost and all computations downstream in the reference graph will use the new value. ```python from ml_collections import config_dict config = config_dict.ConfigDict() config.reference = 1 config.reference_0 = config.get_ref('reference') + 10 config.reference_1 = config.get_ref('reference') + 20 config.reference_1_0 = config.get_ref('reference_1') + 100 print(config.reference) # Prints 1. print(config.reference_0) # Prints 11. print(config.reference_1) # Prints 21. print(config.reference_1_0) # Prints 121. config.reference_1 = 30 print(config.reference) # Prints 1 (unchanged). print(config.reference_0) # Prints 11 (unchanged). print(config.reference_1) # Prints 30. print(config.reference_1_0) # Prints 130. ``` #### Cycles You cannot create cycles using references. Fortunately [the only way](#changing-lazily-computed-values) to create a cycle is by assigning a computed field to one that *is not* the result of computation. This is forbidden: ```python from ml_collections import config_dict config = config_dict.ConfigDict() config.integer_field = 1 config.bigger_integer_field = config.get_ref('integer_field') + 10 try: # Raises a MutabilityError because setting config.integer_field would # cause a cycle. config.integer_field = config.get_ref('bigger_integer_field') + 2 except config_dict.MutabilityError as e: print(e) ``` #### One-way references One gotcha with `get_ref` is that it creates a bi-directional dependency when no operations are performed on the value. ```python from ml_collections import config_dict config = config_dict.ConfigDict() config.reference = 1 config.reference_0 = config.get_ref('reference') config.reference_0 = 2 print(config.reference) # Prints 2. print(config.reference_0) # Prints 2. ``` This can be avoided by using `get_oneway_ref` instead of `get_ref`. ```python from ml_collections import config_dict config = config_dict.ConfigDict() config.reference = 1 config.reference_0 = config.get_oneway_ref('reference') config.reference_0 = 2 print(config.reference) # Prints 1. print(config.reference_0) # Prints 2. ``` ### Advanced usage Here are some more advanced examples showing lazy computation with different operators and data types. ```python from ml_collections import config_dict config = config_dict.ConfigDict() config.float_field = 12.6 config.integer_field = 123 config.list_field = [0, 1, 2] config.float_multiply_field = config.get_ref('float_field') * 3 print(config.float_multiply_field) # Prints 37.8 config.float_field = 10.0 print(config.float_multiply_field) # Prints 30.0 config.longer_list_field = config.get_ref('list_field') + [3, 4, 5] print(config.longer_list_field) # Prints [0, 1, 2, 3, 4, 5] config.list_field = [-1] print(config.longer_list_field) # Prints [-1, 3, 4, 5] # Both operands can be references config.ref_subtraction = ( config.get_ref('float_field') - config.get_ref('integer_field')) print(config.ref_subtraction) # Prints -113.0 config.integer_field = 10 print(config.ref_subtraction) # Prints 0.0 ``` ### Equality checking You can use `==` and `.eq_as_configdict()` to check equality among `ConfigDict` and `FrozenConfigDict` objects. ```python from ml_collections import config_dict dict_1 = {'list': [1, 2]} dict_2 = {'list': (1, 2)} cfg_1 = config_dict.ConfigDict(dict_1) frozen_cfg_1 = config_dict.FrozenConfigDict(dict_1) frozen_cfg_2 = config_dict.FrozenConfigDict(dict_2) # True because FrozenConfigDict converts lists to tuples print(frozen_cfg_1.items() == frozen_cfg_2.items()) # False because == distinguishes the underlying difference print(frozen_cfg_1 == frozen_cfg_2) # False because == distinguishes these types print(frozen_cfg_1 == cfg_1) # But eq_as_configdict() treats both as ConfigDict, so these are True: print(frozen_cfg_1.eq_as_configdict(cfg_1)) print(cfg_1.eq_as_configdict(frozen_cfg_1)) ``` ### Equality checking with lazy computation Equality checks see if the computed values are the same. Equality is satisfied if two sets of computations are different as long as they result in the same value. ```python from ml_collections import config_dict cfg_1 = config_dict.ConfigDict() cfg_1.a = 1 cfg_1.b = cfg_1.get_ref('a') + 2 cfg_2 = config_dict.ConfigDict() cfg_2.a = 1 cfg_2.b = cfg_2.get_ref('a') * 3 # True because all computed values are the same print(cfg_1 == cfg_2) ``` ### Locking and copying Here is an example with `lock()` and `deepcopy()`: ```python import copy from ml_collections import config_dict cfg = config_dict.ConfigDict() cfg.integer_field = 123 # Locking prohibits the addition and deletion of new fields but allows # modification of existing values. cfg.lock() try: cfg.intagar_field = 124 # Modifies the wrong field except AttributeError as e: # Raises AttributeError and suggests valid field. print(e) with cfg.unlocked(): cfg.intagar_field = 1555 # Works fine. # Get a copy of the config dict. new_cfg = copy.deepcopy(cfg) new_cfg.integer_field = -123 # Works fine. print(cfg) print(new_cfg) ``` Output: ``` 'Key "intagar_field" does not exist and cannot be added since the config is locked. Other fields present: "{\'integer_field\': 123}"\nDid you mean "integer_field" instead of "intagar_field"?' intagar_field: 1555 integer_field: 123 intagar_field: 1555 integer_field: -123 ``` ### Dictionary attributes and initialization ```python from ml_collections import config_dict referenced_dict = {'inner_float': 3.14} d = { 'referenced_dict_1': referenced_dict, 'referenced_dict_2': referenced_dict, 'list_containing_dict': [{'key': 'value'}], } # We can initialize on a dictionary cfg = config_dict.ConfigDict(d) # Reference structure is preserved print(id(cfg.referenced_dict_1) == id(cfg.referenced_dict_2)) # True # And the dict attributes have been converted to ConfigDict print(type(cfg.referenced_dict_1)) # ConfigDict # However, the initialization does not look inside of lists, so dicts inside # lists are not converted to ConfigDict print(type(cfg.list_containing_dict[0])) # dict ``` ### More Examples For more examples, take a look at [`ml_collections/config_dict/examples/`](https://github.com/google/ml_collections/tree/master/ml_collections/config_dict/examples) For examples and gotchas specifically about initializing a ConfigDict, see [`ml_collections/config_dict/examples/config_dict_initialization.py`](https://github.com/google/ml_collections/blob/master/ml_collections/config_dict/examples/config_dict_initialization.py). ## Config Flags This library adds flag definitions to `absl.flags` to handle config files. It does not wrap `absl.flags` so if using any standard flag definitions alongside config file flags, users must also import `absl.flags`. Currently, this module adds two new flag types, namely `DEFINE_config_file` which accepts a path to a Python file that generates a configuration, and `DEFINE_config_dict` which accepts a configuration directly. Configurations are dict-like structures (see [ConfigDict](#configdict)) whose nested elements can be overridden using special command-line flags. See the examples below for more details. ### Usage Use `ml_collections.config_flags` alongside `absl.flags`. For example: `script.py`: ```python from absl import app from absl import flags from ml_collections import config_flags _CONFIG = config_flags.DEFINE_config_file('my_config') _MY_FLAG = flags.DEFINE_integer('my_flag', None) def main(_): print(_CONFIG.value) print(_MY_FLAG.value) if __name__ == '__main__': app.run(main) ``` `config.py`: ```python # Note that this is a valid Python script. # get_config() can return an arbitrary dict-like object. However, it is advised # to use ml_collections.config_dict.ConfigDict. # See ml_collections/config_dict/examples/config_dict_basic.py from ml_collections import config_dict def get_config(): config = config_dict.ConfigDict() config.field1 = 1 config.field2 = 'tom' config.nested = config_dict.ConfigDict() config.nested.field = 2.23 config.tuple = (1, 2, 3) return config ``` Warning: If you are using a pickle-based distributed programming framework such as [Launchpad](https://github.com/deepmind/launchpad#readme), be aware of limitations on the structure of this script that are [described below] (#config_files_and_pickling). Now, after running: ```bash python script.py --my_config=config.py \ --my_config.field1=8 \ --my_config.nested.field=2.1 \ --my_config.tuple='(1, 2, (1, 2))' ``` we get: ``` field1: 8 field2: tom nested: field: 2.1 tuple: !!python/tuple - 1 - 2 - !!python/tuple - 1 - 2 ``` Usage of `DEFINE_config_dict` is similar to `DEFINE_config_file`, the main difference is the configuration is defined in `script.py` instead of in a separate file. `script.py`: ```python from absl import app from ml_collections import config_dict from ml_collections import config_flags config = config_dict.ConfigDict() config.field1 = 1 config.field2 = 'tom' config.nested = config_dict.ConfigDict() config.nested.field = 2.23 config.tuple = (1, 2, 3) _CONFIG = config_flags.DEFINE_config_dict('my_config', config) def main(_): print(_CONFIG.value) if __name__ == '__main__': app.run() ``` `config_file` flags are compatible with the command-line flag syntax. All the following options are supported for non-boolean values in configurations: * `-(-)config.field=value` * `-(-)config.field value` Options for boolean values are slightly different: * `-(-)config.boolean_field`: set boolean value to True. * `-(-)noconfig.boolean_field`: set boolean value to False. * `-(-)config.boolean_field=value`: `value` is `true`, `false`, `True` or `False`. Note that `-(-)config.boolean_field value` is not supported. ### Parameterising the get_config() function It's sometimes useful to be able to pass parameters into `get_config`, and change what is returned based on this configuration. One example is if you are grid searching over parameters which have a different hierarchical structure - the flag needs to be present in the resulting ConfigDict. It would be possible to include the union of all possible leaf values in your ConfigDict, but this produces a confusing config result as you have to remember which parameters will actually have an effect and which won't. A better system is to pass some configuration, indicating which structure of ConfigDict should be returned. An example is the following config file: ```python from ml_collections import config_dict def get_config(config_string): possible_structures = { 'linear': config_dict.ConfigDict({ 'model_constructor': 'snt.Linear', 'model_config': config_dict.ConfigDict({ 'output_size': 42, }), 'lstm': config_dict.ConfigDict({ 'model_constructor': 'snt.LSTM', 'model_config': config_dict.ConfigDict({ 'hidden_size': 108, }) }) } return possible_structures[config_string] ``` The value of `config_string` will be anything that is to the right of the first colon in the config file path, if one exists. If no colon exists, no value is passed to `get_config` (producing a TypeError if `get_config` expects a value). The above example can be run like: ```bash python script.py -- --config=path_to_config.py:linear \ --config.model_config.output_size=256 ``` or like: ```bash python script.py -- --config=path_to_config.py:lstm \ --config.model_config.hidden_size=512 ``` ### Additional features * Loads any valid python script which defines `get_config()` function returning any python object. * Automatic locking of the loaded object, if the loaded object defines a callable `.lock()` method. * Supports command-line overriding of arbitrarily nested values in dict-like objects (with key/attribute based getters/setters) of the following types: * `int` * `float` * `bool` * `str` * `tuple` (but **not** `list`) * `enum.Enum` * Overriding is type safe. * Overriding of a `tuple` can be done by passing in the `tuple` value as a string (see the example in the [Usage](#usage) section). * The overriding `tuple` object can be of a different length and have different item types than the original. Nested tuples are also supported. ### Config Files and Pickling {#config_files_and_pickling} This is likely to be troublesome: ```python {.bad} @dataclasses.dataclass class MyRecord: num_balloons: int color: str def get_config(): return MyRecord(num_balloons=99, color='red') ``` This is not: ```python {.good} def get_config(): @dataclasses.dataclass class MyRecord: num_balloons: int color: str return MyRecord(num_balloons=99, color='red') ``` #### Explanation A config file is a Python module but it is not imported through Python's usual module-importing mechanism. Meanwhile, serialization libraries such as [`cloudpickle`]( https://github.com/cloudpipe/cloudpickle#readme) (which is used by [Launchpad]( https://github.com/deepmind/launchpad#readme)) and [Apache Beam]( https://beam.apache.org/) expect to be able to pickle an object without also pickling every type to which it refers, on the assumption that types defined at module scope can later be reconstructed simply by re-importing the modules in which they are defined. That assumption does not hold for a type that is defined at module scope in a config file, because the config file can't be imported the usual way. The symptom of this will be an `ImportError` when unpickling an object. The treatment is to move types from module scope into `get_config()` so that they will be serialized along with the values that have those types. ## Authors * Sergio Gómez Colmenarejo - sergomez@google.com * Wojciech Marian Czarnecki - lejlot@google.com * Nicholas Watters * Mohit Reddy - mohitreddy@google.com
Memory